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A General Equation of State for Dense Fluids

G. Parsafar,' ? N. Farzi,” and B. Najafi'
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A general equation ol state, originally proposed for compressed solids by
Parsafar and Mason, has been successfully applied to dense tluids. The equation
was tested with experimental data for 13 fluids, including polar, nonpolar,
saturated and unsaturated hydrocarbons, strongly hydrogen bonded, and quan-
tum fluids. This equation works well for densities larger than the Boyle density
ru [Vpy=TedBa(Ty)idT. where By Ty) is the second virial coefficient at the
Boyle temperature. at which B,=0] and for a wide temperature range. specifi-
cally from the triple point to the highest temperature for which the experimental
measurements have been reported. The equation is used to predict some impor-
tant known regularities for dense fluids, like the common bulk modulus and the
common compression points, and the Tait-Murnaghan equation. Regarding the
common points, the equation of state predicts that such common points are
only a low-temperature characteristic of dense fluids, as verified experimentally.
It is also found that the temperature dependence of the parameters of the equa-
tion of state differs from those given for the compressed solids. Specifically they
are given by A (T)=u,+b, T+, T —d, TIn(T).

KEY WORDS: compressed fluid: equation of state; regularities.

1. INTRODUCTION

The statistical mechanical EOS which was derived by Thm-Song-Mason
[1] is not applicable for very dense fluids [2]. Another equation of state
which was derived by Parsafar and Mason [2, 3], called the LIR, works
very well for all types of dense fluids, for densities greater than the Boyle
density but for temperatures below twice the Boyle temperature [2]. The
purpose of this paper is to derive an EOS for dense fluids over a very wide

' Depurtment of Chemistry, Isfahan University of Technology. Isfahan. 84154, Iran.
*To whom correspondence should be addressed.
' University of Tarbiat Modarres. Tehran, lran.

1197

0195-928X 97 0900-119781250 0 ¢ 1997 Plenum Publishing Corporation



1198 Parsafar, Farzi, and Najafi

temperature range, from the triple point to the highest temperature for
which experimental data exist.

A universal equation of state has recently been derived for compressed
solids [ 4], based on thermodynamic arguments applied to virial expansion
of the internal energy, E(p, T'), and pressure, p(p, T), in terms of density
(p) and temperature (T), of the form

p(v/v(,)2=A(,+A,(p/p(,)+A1(p/p(,)2 (1)

where v,=1/p, is some standard volume, which is often taken to be the
(molar) volume at p=0, but which can be arbitrary. 4,, 4,, and A4, are
temperature-dependent parameters that depend on the type of substance
and are given as

A,-(T)=T[C,-+3—(i+ I)J((€i+I(T))/T2)dT , o 1=0,1,2 (2)

where C,, - i1s a constant of integration, and where ¢, ,(T') are parameters
for the coefficient of the internal energy E, such that

E=e|(T)+e(T)p+exT)p*+es(T)p? (3)
For temperatures higher than the Debye temperature, 4,(T) are given as
A(T)=a,+b,T—~c¢, TIn(T) (4)

The essential point in deriving the equation of state, Eq. (1), is to fit
only the featureless repulsive branch of the binding energy curve rather
than the entire curve for solids in compression. Note that Eq. (1) is a three-
parameter equation of state, whose parameters can be simply obtained by
fitting p(v/v,)?, as a quadratic function in terms of p/p,, to high-pressure
p—-v-T data.

Now we anticipate that the same argument is also applicable to dense
fluids in the entire temperature range, since the structure of a dense fluid
is primarily determined by the short-range repulsive forces. Thus, in a sense
we picture the repulsive part of the effective pair interaction potential as
determining the structure of the dense fluid and the attractive part as
holding the molecules together at some specified density [ 5]. Therefore, for
dense fluids, the repulsive branch of the effective pair interaction potential
can be represented by a similar functional form in density as solids, ie,
Eq. (3). This expectation will be tested with experimental p-1»—T data of
dense fluids. Such an expectation is not far from reality, as the Tait equation
originally proposed for liquids in 1888 [6] and modified by Murnaghan
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has been extensively used for both solids and liquids [ 7, 8] and, also, for
dense supercritical fluids [9]. Therefore, we may expect that Eq. (1), which
was originally derived for solids, may be applied to dense fluids as well.

2. EXPERIMENTAL TESTS

First, we check the validity of our prediction about the quadratic fit
of pv* respect to p, Eq. (1), at very high and low temperatures. Equation
(1) can be written in a dimensionless form as

(p/pc)(v/vc)2=A()+Al(p/pc)+A2(p/pc)2 (5)

or
prUSZA()+AIpr+A2p§ (6)

where v, and p. are the critical volume and pressure of dense fluid,
respectively.

Due to the abundance of accurate experimental p—v-T data of argon
[10], p,v? of argon is fitted as a quadratic function of p, and the resulting
curve is compared with the experimental data for p, v} for the 1200 and 100 K
isotherms in Figs. | and 2, respectively. The same calculation has been carried
out for different isotherms of argon, for which the results are presented in
Table I. The coefficient of determination [ 11] and the percentage deviation
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Fig. 1. Fitting the experimental data of argon with
Eq. (6) at 1200 K.
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Reduced Parameters (A,. 4,. 4,) in Eq.(6). Coeflicient of Determination {R?),
Pressure Range (4p) of the Data, and Average Absolute Percentage Deviation of the
Calculated Density at a Given Temperature for Argon*

T Ap
(K) A, A, A4, R? (MPa) (100 |dp|/p)t
86 23505+ 1.614 —23.160+1.213 5397+0.228 0.999998 0.1-8 0.062 (0.064)
100 16.729 £ 0.090 —17.684 + 0.070 4.414 £ 0.013 1.000000 0.4-60 0.094 (0.11)
120 13.097 £0.226 —14.360+0.182 3.838+£0.036 0999983 1.5-150 0.055 (0.17)
140 10.831 £0.307 —12.096 £0.261 3461 £0.055 0.999838 4-250  0.359(2.52)
150 1111540456 ~12.106 £0.379 3499+ 0.077 0.999855 10-300  0.323(2.02)
200 13.657 £0.570 —12979 +£0.460 3.806 £ 0.090 0999849  40-600  0.246(1.45)
300 16.790+£0.494 —1298240.388 3.969+0.075 0999900 100-900  0.117(0.41)
400 1995540310 —129704+0.243 4.049 +£0.047 0.999983 200-900  0.033(0.11)
500 22688 +0.179 —12.745+0.146 4.061 £0.029 0.999994 250-900  0.033 (0.11)
600 25994 +0.075 —13.0244+0.063 4.148 £ 0.013 0.999999 300-900  0.019 (0.03)
700 29.793 +£0.067 —13.758 £0.059 4.313+0.013 0.999999 300-900  0.006 (0.02)
800 33.782+0.126 —14.705+0.114 4514+ 0.025 0.999996 350-900  0.012(0.02)
900 37.913+0.172 —15.821 +£0.159 4.746 £ 0.036 0.999994 400-900  0.020(0.03)
1000 42.106 +0.259 —17.03240.243 49954 0.056 0.999990 450-900  0.010(0.02)
1100 46.376 +0.320 —18.3454+0.305 5.264 £0.072 0.999989 500-900  0.005 (0.01)
1200 50.799 +0.425 —19.8334+0411 55724+0.099 0.999986 550-900  0.004 (0.01)

“ Data from Ref. 10.
# Maximum deviations are given in parentheses.
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Fig. 3. Searching the lower density limit of Eq. (6)
using the experimental data for nitrogen at 1200 K.

of the calculated density, compared to the experimental value are included.
The maximum discrepancy is less than 2.6 %, while the average deviation
1s less than 0.4 %.

We have carried out similar comparisons with experimental data
for different fluids, including quantum, aromatic, polar, nonpolar, and
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Fig. 4. Searching for the upper density limit of
Eq. (6) using the experimental data for nitrogen at
400 K.
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hydrogen-bonded compounds and the results are given in Table II
[12-21]. We see that the quadratic fit is quite good. Therefore, we accept
Eq. (1) as a general EOS for dense fluids in the entire temperature range.
From now on, we call this equation of state DSEOS (abbreviated from
“dense system equation of state”). The values of the parameters 4, 4,,
and A4, at each temperature may be obtained from a quadratic fit of p v?
to p,.

To find the low- and high-density limits of the DSEQS, p,»? has been
quadratically fitted with respect to p, in the entire density range for the
1200 K isotherm of N, [12] and is compared with the experimental p, v?
in Fig. 3. As shown in this figure, the quadratic fit is very good for densities
above the Boyle density, p ~ 1.8p,, which is about 20 mol-L ™' for N,.
While the low-density limit is the Boyle density, there is no indication for
the upper-density hmit as far as the experimental data exist [22] (see
Fig. 4). The same conclusion is obtained for other isotherms of N, and also
for other fluids.

3. TEMPERATURE DEPENDENCE OF PARAMETERS

Knowledge of the temperature dependence of the parameters of an
EOS greatly increases the power of prediction from minimal input data.

The temperature dependencies of the parameters 4,, 4,, and A, of
Eq. (6) are shown in Fig. 5 for N,. The parameters have been fitted to
Eq. (4) for solids. As shown in this figure, the data do not completely coin-
cide with Eq. (4), and we anticipate that the temperature dependencies of
the fluid parameters are different from those for the solid.

A derivation of Eq.(4) is based on the assumption that C, is tem-
perature independent, an assumption which is reasonable for solids at tem-
peratures above the Debye temperature. Such an assumption should be
investigated for dense fluids. Due to the unavailability of the variation of
C, with temperature at constant density, the summary of Stewart and
Jacobsen [10] is used to obtain the variation of internal energy with den-
sity for different isotherms in a wide temperature range. As shown in Fig. 6,
the internal energy may be fitted quite well with respect to p according to
Eq. (3). The coefficients of the polynomials, e,(T), can be plotted versus
temperature. The results are shown in Fig. 7. Unlike solids, we find that the
e; vary quadratically with T and not linearly. Of course, such a behavior
is the reason that the parameters in Eq.(6) do not behave as those in
Eq. (4). If we use a quadratic temperature dependence for each e,(T) in
Eq. (2), we find

A(T)y=a,+b;T+c,T"—d,TIn(T), i=0,1,2 (N
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Fig. 5. The parameters of Eq. (6) obtained experi-
mentally which ure fited with Eq. (4) (solid curve)
uand Eq. (7) (dotted curve).

where a;, b,. ¢;, and d; are constants (independent of both T and p). The
values of the A, in Eq. (7) are shown in Fig. 5. The values of ;. b, c¢;, and
d; may be obtained from a least-squares fit of Eq.(7) to the experimental
results. The results obtained for Ar and N, are given in Table II1.
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Fig. 6. The variation of the internal energy with
respect to density for argon at 700 K (O), 600 K
(¥). 500K (V), 400 K (@), and 240 K (), fitted
to Eq. (3).

4. REGULARITY PREDICTION

Any sensible equation of state is expected to verify the known
regularities and also may be able to predict new regularities. In this section
we discuss the regularities that can be deduced from DSEOS.

4.1. Common Compression Factor Point

Some equations of state predict a common intersection point for the
compression factor, Z, versus p for different isotherms of a fluid. The three-
shell modifications of the Lennard-Jones-Devonshire (LJD) [23], LIR
[2.3], and ISM [1] equations of state predict such a common intersection
point, in agreement with experimental data [24].

The compressibility factor, Z, is given by DSEOS as

Z=(Aop+A4,p>+4:p)/RT (8)

The numerical values of Z, given by Eq. (8), are plotted against p for different
isothems of argon in the temperature range of 100-140 K in Fig. 8. The
density of the common point given by the DSEOS, po, is 42.6 mol - L,
which is very close to the experimental value, 42.8 mol-L~".

840, 18:5-9
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Fig. 7. The parameters of Eq. (3) fitted quadratically as a function of temperature for

argon.

Table HI. Constants of Eq. (7}, [4{T)=«,+b, T+, T —d. TIn(T}). for Argon” and

Nitrogen”

Parameter b, ¢, x10° d; % 10*

Fluid of DSEOS (K™ (K™% (K1
Ar¢ A, 23.03+2461 —0.295+0.071 —27.15 + 10.51 —4948 +11.44
A, —24.88 +1.806 0.245 + 0.052 16.85+7.71 36.78 +8.393
A, 5148 +0.332 —0.0274+0.0096 —~1433+1419 —4.098 +1.544
Nz" A, 26.690 + 1.545 —0.344 +0.045 —25440+6.599 —56.820+7.180
A, —29.720 + 1.397 0.332 £ 0.0403 20910+ 5964 49.400 1 6.490
A, 6.195+0.318 —0.0414+0.0092 —1943+1.356 —06.096+1.475

“Ref. 10

®Ref. 12.
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(Z-(Ap/RTI,"
]

Fig. 8. Searching for the common compression point
given by Eq.(8) and Eq.(10) (top left. using the
experimental data on argon for given isotherms,

The DSEOS may be used to obtain the common compression point
analytically. The density at this point can be obtained by setting
(0Z/0T),  equal to zero, which gives

7oz

(—a;+¢,T*—d TYpoy) "' =0 (9)

MIJ

i=0

At low temperatures, the ¢, T~ and d,T terms are negligible compared
to @,, and hence, p, is a unique point (independent of temperature). But
at high temperatures, where ¢; T and d,T are not negligible, the DSEOS
predicts no common compression point. The above-mentioned equations of
state (LJD. LIR, ISM) assert the existence of a common compression point
but do not predict that such a regularity is a low-temperature behavior of
fluid. The experimental value of Z against p is plotted for different
isotherms of Ar in the temperature range of 800-1100 K in Fig. 9, which
does not show any common intersection point. Therefore the DSEOS
prediction seems to be in accordance with reality.

The reduced form of Eq. (8) may be rearranged into

(Z—Ayp/RT) v;=(4,+ 4:p,)/RT (10)

which shows that a plot of (Z— A,p/RT) v} versus p, is linear, by which
the intersection point can be determined more conveniently (see the top
left-hand side in Fig. 8).
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Fig. 9. Searching for the common compression point
given by Eq. (10) for the high-temperature isotherms of
argon (note that, unlike in Fig. 8, no common point
exists ).

In order to determine the density at the common compression point,
Poz. from Eq. (10), the following equation must be solved:

{0L(Z — Aop/RT) v71/0T 0 (11)

\ -
f iy pd =

[The value of the density given by this equation, pf,,, differs from that
given by Eq. (9), poz. Using Eqgs. (10) and (11) along with Eq. (7), we find

Poz _ a—c,\T*+d,T
pe  —ar+c.T>—d, T

(12)

At low temperatures, where the ¢; T2 and d,T terms are negligible, Eq. (12)
reduces to

&z_a, (13)
Pec —a:

Using the values of a, and a, for Ar given in Table III, we find
(poz/p.) =483, and py, corresponds to 64.19 mol-L ~' (for Ar, p.=
13.29 mol-L~"'). The value of the calculated density at the intersection
point is very close to the experimental value of (pG,/p.) =4.56 (see Fig. 8).
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4.2. Common Bulk-Modulus Point

Recently, a new regularity in the behavior of the reduced bulk
modulus, B, =(1/RT)(0p/0p),, has been reported for liquids, where R is
the gas constant. Huang and O’Connell [25] found that the isotherms of
B, versus molar volume intersect at a common point, called the common
bulk-modulus point. They checked the existence of this point for more than
250 fluids. The value of B, is independent of temperature at this point and
Pon 15 the density of the fluid at this point.

Using the DSEOS, we find

B, =(24,p +34,p>+44.p")/RT (14)

We have used Eq.(14) to calculate B, of Ar for different isotherms. The
results are shown in Fig. 10 for 100, 110, 120, 130, and 140 K isotherms,
implying a common bulk-modulus point at 34.48 mol - L ~'.

The density at the common bulk-modulus point, p,;. can be obtained
by setting (0B,/0T), equal to zero:

ron

Y (—a+e,T —d, T poy)*' =0 (15)
=0

This equation shows that p,, is temperature independent only at low
temperatures, at which the temperature-dependent terms, namely, ¢, T-
and d,; T, are negligible compare to the temperature-independent terms, «;.

"o 1 24

X

b

@

~

%

5 -4 18

.

g
4 12

ms

4 s
4 0

3.0

P

Fig. 10. Searching lor the common bulk modulus point
given by Eq.(14) and Eq.(16) (top left), using the
experimental data on argon at given lemperatures.

84018 519
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Equation (14) can be rearranged into
(B,—24,p/RT) v} = (34, +44,p,)/RT (16)

which shows that (B, —2A4,p/RT) v? versus p, is linear for all isotherms of
a dense fluid. Such a linear behavior is plotted in the top left-hand side in
Fig. 10, for different isotherms of Ar from 100 to 140 K. Clearly, a common
intersection point at (poy/p.) = 3.45 (corresponds to pop =45.85mol - L")
exists.

A theoretical basis for the existence of such a point was recently
developed by Boushehri et al. using the Ihm-Song-Mason EOS [26]. They
found that

1
pOB:A_bO (17)

where A 1s the characteristic constant of the substance and b, is the
molecular covolume at zero temperature. In another work, Najafi et al.
[24] used the LIR EOS to find

Pon=06—> (18)

Since 4, and B, are temperature independent, the LIR predicts the exis-
tence of a common bulk-modulus point for each dense liquid analytically.
In the following paragraph, we show that this result is valid only at low
temperatures.

Using the DSEOS, at pp, we must have

{O[(B,—2A40p/RT)v}]/0T} 0 (19)

Ponlre =
or

@= 3a,—c, T*+d,T)
pe H—ar+c¢,T°—d,T)

(20)

Equation (20) shows that p,s depends on T, except at low temperatures,
where all temperature-dependent terms are negligible compared to @, and
a, (see Table III). Therefore, at low temperatures Eq. (20) reduces to

!

—3a
%=f (21)
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With the data in Table III for argon, Eq. (21) gives pi,z =48.17 mol - L',
which is very close to the experimental value piz=4585mol-L~'
(p.=1329mol- L' for Ar).

It is interesting to compare the ratio of piys/po, given by different
equations of state. From Egs. (12) and (20), the DSEOS gives the
following result:

pos _3

posr 4 (22)
z

In the temperature range from 100 to 140 K we have for argon
(por/p.) =456 and pop/p.=3.45, which gives (pop/poz) =0.76. Najafi
etal. [24] used the LIR to obtain

’

Pos _(0.6)°5 ~0.77 (23)

Poz

which is very close to the ratio given by the DSEOS.

4.3. Linearity of the Bulk Modulus Versus Pressure
(Tait-Murnaghan Equation)

The origin of this regularity actually goes back to the empirical work
of Tait on liquids in 1888 [6], in which the bulk modulus (reciprocal com-
pressibility) of a liquid (or solid) is linear in pressure for each isotherm.
Such a linearity is known as the Tait-Murnaghan equation [8],

B=B,+ Byp (24)

where B, and B, are temperature-dependent parameters. A theoretical
basis for this equation has been given by Song et al. [27], using an equa-
tion of state based on statistical-mechanical perturbation theory.

The reduced bulk modulus, B,, is plotted as a function of p in the
200-1200 K temperature range for argon in Fig. 11, in accordance with
Eq. (14). As shown, at high temperatures and pressures a linear behavior
is obtained in a very wide pressure range, which is in accordance with the
results obtained by Alavi etal. [9].

Using a little algebra calculation, we find the following result from the
DSEOS:

B - —Aop+4:p° | 3
a RT pRT

p (25)
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Fig. 11. The reduced bulk modulus in terms of
pressure. using Eq.{23) for given isotherms of
argon.

which is expected to be linear with respect to p for each isotherm of a dense
fluid. It must be noted that although the density of a fluid depends on the
pressure for each isotherm, this dependency is very weak for dense fluids.
The variation of the slope of Eq. (25) with respect to p 1s given by

_[a(s/pRT)] 3 26)
T

op —pRTKT

where K, is the isothermal compressibility of the fluid. At high tem-
peratures, the variation of the slope of Eq.(25) with pressure is small
enough to be taken to be zero, a result which it not true at low tem-
peratures. This prediction is consistent with the experimental data of
Robertson and Babb [22]. The intercept of B, versus p goes to zero at high
temperatures, a result which is in agreement with Eq. (25).

5. COMPARISON OF LIR AND DSEOS

One of the recent equations of state derived for dense fluids is LIR,
which simply predicts that (Z — 1) v} varies linearly with respect to p;, for
each isotherm, as

(Z—1)v]=A+ Bp} (27)
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where 4 and B are temperature-dependent parameters of the fluid,

A
A=A,—— 2
2T RT (28)
and
B,
B=—- 2
RT (29)

where 4., A,, and B, are constants depending on the type of fluid.

Although it appears that LIR has a simpler form mathematically than
the DSEOS, the LIR works only at temperatures below twice the Boyle
temperature. However, the DSEOS does not have such a limitation. As
shown in Fig. 12, (Z —1) ¢] as a function of p; has a large deviation from
linearity for the 1200 K isotherm of argon. The coefficient of determination
of LIR is given in Table IV, which may be compared with that of DSEOS
given in Table I, to conclude that the former EOS is valid only for low
temperatures (7 <2T}), while the latter is valid for the entire temperature
range, as far as the experimental data exist. This is the advantage of the
DSEOS over the LIR.

The ability of the LIR and the DSEOS to predict the experimentally
known regularities is comparable. However, the DSEOS has another
advantage over the LIR to predict that the common bulk modulus and the

0.370 T T
S
o
=)
= .
T 0.365 [ B
N
N
* L ]
Py L ]
0.360 L L
3 4 5 6
2
P,

Fig. 12. The failure of LIR at high temperatures, using
experimental data on argon at 1200 K.
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Table IV. Reduced Parameters of LIR (A. B), the Coeflicient of Determination (R?), and the
Pressure Range (4p) for Argon“ for Different Isotherms

T ap
(K) Ax10? Bx10* R? (MPa)
86 —1679.4 +1.459 2197.3+21 0.99999 0.1-8
100 —13024+35 18588 + 5.4 0.99992 0.4-60
120 —9325+4.1 15198+ 6.9 0.99982 1.5-150
140 —696.8 + 3.08 1309.0 +5.3 0.99987 4-250
150 —6142+36 1240.2 + 5.8 0.99987 10-300
200 —3073+33 947.6 443 0.99986 40-600
300 —96+29 6229438 0.99978 100-900
400 129.1 £2.3 4441 +33 0.99973 200-900
500 2074 +24 3276 +3.7 0.99941 250-900
600 256.2+2.6 2450+ 44 0.99868 300-900
700 2938 +33 174.6 + 6.1 0.99508 300-900
800 3173+ 34 1243+ 6.7 0.98984 350-900
900 3347+34 83.0+7.2 0.97836 400-900
1000 348.0 + 3.4 480+ 74 0.94531 450-900
1100 358.7+3.4 176 + 7.6 0.75432 500-900
1200 367.3+3.6 —94+82 0.55045 550-900
“ Ref. 10,

common compression points occur both only at low temperatures, as
explained before. This low-temperature phenomenon has been reported
experimentally by Boushehri etal. [26] for the common bulk-modulus
point and, recently, for the isobaric expansivity by Deiters and Randzio
[28]. As we showed, the DSEOS verifies that the existence of these
common points is only a low-temperature characteristic of fluids.

The ratio of the density at two common points, piog/poz 1S equal to
0.75 according to the DSEOS. It is interesting to note that this ratio is
equal to (0.6)°° =0.77 given by the LIR [24], so the two are very close to
each other.

The behavior of B, with respect to p has been studied with both the
LIR and the DSEOS for both subcritical and supercritical fluids in a wide
pressure range. It is interesting to note that the LIR gives the following
relation for B, with pressure:

(Bt i)
B,=2(Bp ”*(,)RT” (30)

whose slope is exactly the same as the slope given by the DSEOS
[Eq.(25)].
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6. CONCLUSION

An equation of state which was originally derived for solids was suc-
cessfully applied for dense fluids by some modifications of its temperature-
dependent parameters. Since the structure of a dense fluid is determined
primarily by the short-range repulsive forces, like solids, its repulsive
branch of the effective pair interaction potential can be represented by the
same functional form in density as solids. The only major difference
between the EOS of solids and that of dense fluids is the temperature
dependencies of their parameters. The constancy of C, with respect to T
that applied for solids is not generally valid for dense fluids in a wide tem-
perature range. Experimentally, we have noted that the C, of a dense fluid
varies with T linearly.

The DSEOS predicts that the common bulk modulus and common
compression points exist only at low temperatures, a fact which is known
experimentally [26, 28]. The ratio of the densities at these points
(pos/Poz) implied by the DSEOS is 0.75, which is very close to the value
0.77 given by the LIR.

Finally, we obtained a very accurate equation of state for dense fluids,
valid for all type of fluids, including polar, nonpolar, saturated, and
unsaturated hydrocarbons and strongly hydrogen bonded, and quantum
fluids (see Table II). It is valid for densities greater than the Boyle density
at temperature from the triple point to the highest temperature for which
the experimental data are available.
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