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A General Equation of State for Dense Fluids 

G. P a r s a f a r , '  2 N. Farzi ,  3 and B. Najafi '  

Recei+'ed Fehruarv 26, 1997 

A general equation of state, originally proposed lbr compressed solids by 
Parsafar and Mason, has been successfully applied to dense fluids. The equation 
was tested with experimental data for 13 fluids, including polar, nonpolar, 
saturated and unsaturated hydrocarbons, strongly hydrogen bonded, and quan- 
tum fluids. This equation works well Ibr densities larger than tile Boyle density 
Pn [ I/Ih~ = Tl~ dB2( Tu~)/dT, where B q Ti3) is the second virial coelficient at the 
Boyle temperature, at which B_, = 0] and for a wide temperature range, specifi- 
cally from the triple point to the highest temperature fc, r which the experimental 
measurements have been reported. The equation is used to predict some impor- 
tant known regularities for dense fluids, like the comrnon bulk modulus and the 
common compression points, and the Tait Murnaghan equation. Regarding tile 
common points, the equation of state predicts that such common points are 
only a low-temperature characteristic of dense fluids, as verified experimentally. 
It is also Iimnd that the temperature dependence of tile parameters of the equa- 
tion of state diflers from those given for tile compressed solids. Specilical[y they 
are given by A , ( T )  = a, + b, T +  c, T'- - d, T In(T). 

KEY WORDS: compressed Iluid: equation of state; regularities. 

1. I N T R O D U C T I O N  

T h e  s ta t i s t ica l  m e c h a n i c a l  E O S  which  was  de r ived  by I h m - S o n g - M a s o n  

[ 1 ]  is n o t  app l i c ab l e  for ve ry  dense  fluids [ 2 ] .  A n o t h e r  e q u a t i o n  o f  s ta te  

wh ich  was  de r i ved  by Pa r sa fa r  and  M a s o n  [2,  3] ,  ca l led  the  L I R ,  w o r k s  

very  well  for all types  o f  dense  fluids, for densi t ies  g rea t e r  t h a n  the  Boyle  

dens i ty  bu t  for t e m p e r a t u r e s  be low twice  the  Boyle  t e m p e r a t u r e  [ 2 ] .  T h e  

p u r p o s e  o f  this p a p e r  is to de r ive  an  E O S  for dense  fluids o v e r  a ve ry  wide  
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temperature range, from the triple point to the highest temperature for 
which experimental data exist. 

A universal equation of state has recently been derived for compressed 
solids [4],  based on thermodynamic arguments applied to virial expansion 
of the internal energy, E(p, T), and pressure, p(p, T), in terms of density 
(p) and temperature (T), of the form 

p( t , /Vo)  2 = A() + ,4 J(P/Po) + A2(P/Po) 2 (1) 

where v,, = 1/p, is some standard volume, which is often taken to be the 
(molar) volume at p--O, but which can be arbitrary. Ao, A~, and A 2 are 
temperature-dependent parameters that depend on the type of substance 
and are given as 

where Ci+2 is a constant of integration, and where ei+ dT)  are parameters 
for the coefficient of the internal energy E, such that 

E = eo(T) + el(T) p + e2(T) p2 + e3 (T) p3 (3) 

For temperatures higher than the Debye temperature, Ai(T) are given as 

A i( T)=ai + biT--ciTln( T) (4) 

The essential point in deriving the equation of state, Eq. (1), is to fit 
only the featureless repulsive branch of the binding energy curve rather 
than the entire curve for solids in compression. Note that Eq. (1) is a three- 
parameter equation of state, whose parameters can be simply obtained by 
fitting p(v/vo) 2, as a quadratic function in terms of P/Po, to high-pressure 
p-v--T data. 

Now we anticipate that the same argument is also applicable to dense 
fluids in the entire temperature range, since the structure of a dense fluid 
is primarily determined by the short-range repulsive forces. Thus, in a sense 
we picture the repulsive part of the effective pair interaction potential as 
determining the structure of the dense fluid and the attractive part as 
holding the molecules together at some specified density [ 5 ]. Therefore, for 
dense fluids, the repulsive branch of the effective pair interaction potential 
can be represented by a similar functional form in density as solids, i.e., 
Eq. (3). This expectation will be tested with experimental p-v-T data of 
dense fluids. Such an expectation is not far from reality, as the Tait equation 
originally proposed for liquids in 1888 [6] and modified by Murnaghan 
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has been extensively used for both solids and liquids [7, 8] and, also, for 
dense supercritical fluids [9] .  Therefore, we may expect that Eq. (1), which 
was originally derived for solids, may be applied to dense fluids as well. 

2. EXPERIMENTAL TESTS 

First, we check the validity of our prediction about the quadratic fit 
of pv'- respect to p, Eq. (1), at very high and low temperatures. Equation 
(1) can be written in a dimensionless form as 

(p/pc)(v/v~) 2 = A,) + A ~(P/Pc) + A2(p/pc) "- (5) 

or 

prv~ = Ao + Aipr  + A2p~ (6) 

where v~ and Pc are the critical volume and pressure of dense fluid, 
respectively. 

Due to the abundance of accurate experimental p - v - T  data of argon 
[ 10], prv{ of argon is fitted as a quadratic function of Pr and the resulting 
curve is compared with the experimental data forprv~ for the 1200 and 100 K 
isotherms in Figs. 1 and 2, respectively. The same calculation has been carried 
out for different isotherms of argon, for which the results are presented in 
Table I. The coefficient of determination [ 11 ] and the percentage deviation 
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Fig. 1. 
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Fitting the experimental data of argon with 
Eq. (61 at 1200 K. 
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Fig. 2. Same as Fig. I Ibr a 100 K isotherm. 

Table I. Reduced Parameters (A,,..4~..421 in Eq.(6).  Coefficient of  Determination IRe), 
Pressure Range (Ap) of the Data. and Average Absolute Percentage Deviation of the 

Calculated Density at ;1 Given Temperatt,  re for Argon" 

T AI, 
( K )  .4,) .4, .42 R-' ( M P a )  (100 I z l P l / i , ) , , , , .  I' 

86 23.505+_1.614 - 2 3 . 1 6 0 + 1 . 2 1 3  5.397_+0.228 0.999998 0.1-8 0.06210.064) 
100 16.729+_0.090 -17.684+_0.070 4.414_+0.013 1.000000 0.4-60 0.09410.11) 
120 13.097_+0.226 -14.360+_0.182 3.838+0.036 0.999983 1.5 150 0.055(0.17) 
140 10.831 +_0.307 -12 .096+0 .261  3.461 +0.055 0.999888 4 250 0.359(2.521 
150 11 .115_+0 .456-12 .106+0 .379  3.499+0.077 0.999855 10 300 0.323(2.021 
200 13.657+_0.570 -12.979_+0.460 3.806+0.090 0.999849 40-600 0.246(I.451 
300 16.790+_0.494-12.982+-0.388 3.969_+0.075 0.999900 100-900 0.117(0.411 
400 19.955+_0.310 -12.970_+0.243 4.049+0.047 0.999983 200 900 0.03310.111 
500 22.688_+0.179 -12.745_+0.146 4.061+0.029 0.999994 250-900 0.03310.11) 
600 25.994+_0.075 - 1 3 . 0 2 4 + 0 . 0 6 3  4.148_+0.013 0.999999 300-900 0.01910.031 
700 29.793+0.067 -13.758_+0.059 4.313+0.013 0.999999 300-900 0.006(0.021 
800 33.782-1-0.126 -14.705+_0.114 4.514+-0.025 0.999996 350-900 0.012(0.021 
900 37.913_+0.172 -15.821_+0.159 4.746+_0.036 0.999994 400 900 0.020(0.03) 

1000 42.106_+0.259 -17.032_+0.243 4.995+_0.056 0.999990 450 900 0.010(0.021 
1100 46.376_+0.320 - 1 8 . 3 4 5 + 0 . 3 0 5  5.264+0.072 0.999989 500-900 0.005(0.01) 
1200 50.799 4- 0.425 - 19.833 4- 0.41 I 5.572 + 0.099 0.999986 550-900 0.004 10.01 ) 

" Data from Ref. 10. 
;' Max imum deviations are given in parentheses. 
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Fig. 3. Searching the lower density limit of Eq. (6) 
using the experimental data Ibr nitrogen at 1200 K. 

of  the ca lcu la ted  densi ty,  c o m p a r e d  to the exper imenta l  value  are included.  
The  m a x i m u m  d isc repancy  is less than  2.6 %,  while the average devia t ion  
is less than  0 .4%.  

We have carr ied  out  s imi lar  compar i sons  with exper imenta l  da t a  
for different fluids, inc luding quan tum,  a romat ic ,  polar ,  nonpo la r ,  and  
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Fig. 4. Searching for the upper density limit of 
Eq. (6) using the experimental data for nitrogen at 
400 K. 
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hydrogen-bonded compounds and the results are given in Table II 
[ 12-21]. We see that the quadratic fit is quite good, Therefore, we accept 
Eq. (1) as a general EOS for dense fluids in the entire temperature range. 
From now on, we call this equation of state DSEOS (abbreviated from 
"dense system equation of state"). The values of the parameters Ao, A~, 
and A 2 at each temperature may be obtained from a quadratic fit ofprv~ 
to  Pr" 

To find the low- and high-density limits of the DSEOS, prv~; has been 
quadratically fitted with respect to pr in the entire density range for the 
1200 K isotherm of N 2 [ 12] and is compared with the experimental prv'~ 
in Fig. 3. As shown in this figure, the quadratic fit is very good for densities 
above the Boyle density, p~ ~. l.Sp~, which is about 20 mol.  L-~ for N2. 
While the low-density limit is the Boyle density, there is no indication for 
the upper-density limit as far as the experimental data exist [22] (see 
Fig. 4). The same conclusion is obtained for other isotherms of N: and also 
for other fluids. 

3. TEMPERATURE DEPENDENCE OF PARAMETERS 

Knowledge of the temperature dependence of the parameters of an 
EOS greatly increases the power of prediction from minimal input data. 

The temperature dependencies of the parameters Ao, At, and A 2 of 
Eq. (6) are shown in Fig. 5 for N,.  The parameters have been fitted to 
Eq. (4) for solids. As shown in this figure, the data do not completely coin- 
cide with Eq. (4), and we anticipate that the temperature dependencies of 
the fluid parameters are different from those for the solid. 

A derivation of Eq. (4) is based on the assumption that C,, is tem- 
perature independent, an assumption which is reasonable for solids at tem- 
peratures above the Debye temperature. Such an assumption should be 
investigated for dense fluids. Due to the unavailability of the variation of 
C,, with temperature at constant density, the summary of Stewart and 
Jacobsen [ 10] is used to obtain the variation of internal energy with den- 
sity for different isotherms in a wide temperature range. As shown in Fig. 6, 
the internal energy may be fitted quite well with respect to p according to 
Eq. (3). The coefficients of the polynomials, ei(T), can be plotted versus 
temperature. The results are shown in Fig. 7. Unlike solids, we find that the 
ei vary quadratically with T and not linearly. Of course, such a behavior 
is the reason that the parameters in Eq. (6) do not behave as those in 
Eq. (4). If we use a quadratic temperature dependence for each ei(T) in 
Eq. (2), we find 

A i ( T ) = a i + b i T + c i T 2 - d i T l n ( T ) ,  i = 0 ,  1, 2 (7) 
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Fig. 5. The parameters of Eq. (6) obtained experi- 
mentally which are lilted with Eq. (41 (solid curve) 
and Eq. 171 [dotted curve). 

where a~, bi, c~, and  di are  cons tan t s  ( i ndependen t  of  bo th  T and p}. The 
values of  the A s in Eq. (7) are shown in Fig. 5. The values of  a~, b~, q ,  and 
d, may  be ob t a ined  from a leas t -squares  fit of  Eq. (7) to the exper imenta l  
results. The  results  ob t a ined  tbr Ar and N ,  are given in Table  III. 
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4. R E G U L A R I T Y  P R E D I C T I O N  

Any sensible equat ion  of state is expected to verify the known 
regularities and also may  be able to predict new regularities. In this section 
we discuss the regularities that  can be deduced from DSEOS.  

4.1. Common Compression Factor Point 

Some equat ions of  state predict a c o m m o n  intersection point  for the 
compress ion  factor, Z, versus p for different isotherms of a fluid. The  three- 
shell modif icat ions of  the L e n n a r d - J o n e s - D e v o n s h i r e  (LJD)  [23] ,  L IR  
[2, 3 ], and ISM [ 1 ] equat ions of  state predict such a c o m m o n  intersection 
point,  in agreement  with experimental  data  [24] .  

The  compressibi l i ty  factor, Z, is given by D S E O S  as 

Z = (Aop + A I P" + A 2p3)/RT (8) 

The numerical  values of  Z, given by Eq. (8), are plot ted against  p for different 
isothems of argon in the t empera ture  range of 100--140 K in Fig. 8. The 
density of  the c o m m o n  point  given by the DSEOS,  Poz ,  is 42.6 m o l .  L-~ ,  
which is very close to the exper imental  value, 42.8 mo l .  L -  t. 

S49, I U,5-9 
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The parameters of Eq. (3) fitted quadratically as a function of temperature lbr 

argon. 

Table l l l ,  Constants of Eq. (7L [AATJ=a,+b,T+ciTZ-d, Tln(T)], fbr Argon" and 
Nitrogen t' 

Parameter b, c ,x  lO t̀  d, x 103 

Fluid of DSEOS a, ( K - I )  (K-2)  ( K - I )  

Ar" A, 23.03+2.461 -0 .295+0 .071  -27 .15+10 .51  -49 . 48+ 11 . 44  

A~ -24 .88  _ 1.806 0.245 + 0.052 16.85 _ 7.71 36.78 + 8.393 
A, 5.148 4- 0.332 -0 .027  + 0.0096 - 1.433 + 1.419 -4 .098  + 1.544 

N2 I' Ao 26.690+ 1.545 - 0 . 3 4 4 + 0 . 0 4 5  -25 .440+6 .599  -56 .820+7 .180  
A~ - 29.720 _ 1.397 0.332 + 0.0403 20.910 + 5.964 49.400 + 6.490 

A 2 6.195+0.318 -0.041 +0.0092 -1.943_+ 1.356 -6.096_+ 1.475 

" Ref. l O. 
b Ref. 12. 
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Fig. 8. Searching for the common compression point 
given by Eq.(8) and Eq.(10) (top left, using the 
experimental data on argon for given isotherms. 

The DSEOS may be used to obtain the common compression point 
analytically. The density at this point can be obtained by setting 
(OZ/OT),,,, z equal to zero, which gives 

2 
y" ( - a i + c i T 2 - d , T ) ( p o z ) i + l = O  

i = 0 

(9) 

At low temperatures, the ciT -~ and di T terms are negligible compared 
to ai, and hence, Poz is a unique point (independent of temperature). But 
at high temperatures, where ciT'- and diT are not negligible, the DSEOS 
predicts no common compression point. The above-mentioned equations of 
state (LJD, LIR, ISM) assert the existence of a common compression point 
but do not predict that such a regularity is a low-temperature behavior of 
fluid. The experimental value of Z against p is plotted tbr different 
isotherms of Ar in the temperature range of 800-1100 K in Fig. 9, which 
does not show any common intersection point. Therefore the DSEOS 
prediction seems to be in accordance with reality. 

The reduced form of Eq. (8) may be rearranged into 

( Z -  Aop/RT) v~ = (A, + A2p,.)/RT (10) 

which shows that a plot of ( Z - A o p / R T )  v~ versus Pr is linear, by which 
the intersection point can be determined more conveniently (see the top 
left-hand side in Fig. 8). 
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Fig. 9. Searching for the common compression point 
given by Eq. 110) for the high-tenlperature isotherms of 
argon (note that, unlike in Fig. 8, no common point 
exists ). 

In order to determine the density at the common compression point, 
Pb, z, from Eq. (10), the following equation must be solved: 

{ c3[(Z - A o p / R T )  v T ] / a T  ~ ,,,;,z ,,<., = 0 (11) 

[The value of the density given by this equation, P~z, differs from that 
given by Eq. (9), Poz. Using Eqs. (10) and (I1) along with Eq. (7), we find 

P'oz a l - c l T ~- + dl T 

Pc --a2+Q T 2 - d , T  
(12) 

At low temperatures, where the c , T  2 and d~T terms are negligible, Eq. (12) 
reduces to 

t 
P o z  a l  

(13) 
Pc - - a ~  

Using the values of at and a2 for Ar given in Table III, we find 
( p ' o z / p ~ l = 4 . 8 3 ,  and Pbz corresponds to 64.19mol. L ~ (tbr Ar, pc=  
13.29 mol.  L-~). The value of the calculated density at the intersection 
point is very close to the experimental value o f ( p ' o z / p ~ ) =  4.56 (see Fig. 8). 
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4.2. Common Bulk-Modulus Point 

Recently, a new regularity in the behavior of the reduced bulk 
modulus, B,. = ( I / R T ) ( S p / O p )  r, has been reported for liquids, where R is 
the gas constant. Huang and O'Connell [25] found that the isotherms of 
B,. versus molar volume intersect at a common point, called the common 
bulk-modulus point. They checked the existence of this point for more than 
250 fluids. The value of Br is independent of temperature at this point and 
Po,~ is the density of the fluid at this point. 

Using the DSEOS, we find 

B.. = (2A oP + 3 A l p  ~- + 4A ~p-~)/RT (14) 

We have used Eq. (14) to calculate B r of Ar lbi" different isotherms. The 
results are shown in Fig. 10 for 100, 110, 120, 130, and 140 K isotherms, 
implying a common bulk-modulus point at 34.48 mol. L L 

The density at the common bulk-modulus point, P o , ,  can be obtained 
by setting (SB./@T),, . , ,  equal to zero: 

( - a i  + c i T 2 - d i T ) ( p o l ~ )  i+ l = 0  (15) 
i = 0 

This equation shows that PoB is temperature independent only at low 
temperatures, at which the temperature-dependent terms, namely, c~T ~- 
and d~T, are negligible compare to the temperature-independent terms, a~. 

q b  I s  
== 24 

%. 
1 o 18 

" -5  

- to  1 2 ~.- 

-15 [ ~  

B 

iiii ~ J 
1 .5  2 . 0  2 . 5  3 . 0  

PT 

Fig, 10. Searching Ibr the common bulk modulus point 
given by Eq.(14) and Eq.(16) (top left), using the 
experimental data on argon at given temperatures. 

,~4(~ I,r 5-10 
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Equation (14) can be rearranged into 

(B r -  2Aop/RT) v~ = (3A t + 4A2pr)/RT (16) 

which shows that (Br--2Aop/RT) v~ versus Pr is linear for all isotherms of 
a dense fluid. Such a linear behavior is plotted in the top left-hand side in 
Fig. 10, for different isotherms of Ar from 100 to 140 K. Clearly, a common 
intersection point at (P'oa/Pc) = 3.45 (corresponds to P~t~ = 45.85 mol. L -~) 
exists. 

A theoretical basis for the existence of such a point was recently 
developed by Boushehri et al. using the Ihm-Song-Mason EOS [26]. They 
found that 

1 
p o u = ~ o  (17) 

where 2 is the characteristic constant of the substance and bo is the 
molecular covolume at zero temperature. In another work, Najafi et al. 
[24] used the LIR EOS to find 

pbu=0.6 (18) 
Bi 

Since A~ and B~ are temperature independent, the LIR predicts the exis- 
tence of a common bulk-modulus point for each dense liquid analytically. 
In the following paragraph, we show that this result is valid only at low 
temperatures. 

Using the DSEOS, at P~B, we must have 

{8[(Br-  2Aop/RT) v~]/OT} ?'o,,/,,, = 0 (19) 

o r  

P'ou 3(al--ciT2 +dl T) 
m 

p~ 4(-a2+c2T2-d2T) 
(20) 

Equation (20) shows that P~a depends on T, except at low temperatures, 
where all temperature-dependent terms are negligible compared to a~ and 
a 2 (see Table III). Therefore, at low temperatures Eq. (20) reduces to 

P~B - 3 a l  (21) 
P~ 4a2 
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With the data in Table III for argon, Eq. (21) gives p~B=48.17 tool. L -t ,  
which is very close to the experimental value p~B=45.85 mol.  L -t  
(Pc = 13.29 mol.  L -I for Ar). 

It is interesting to compare the ratio of P'o~/P'oz given by different 
equations of state. From Eqs. (12) and (20), the DSEOS gives the 
following result: 

PbB 3 
�9 = -  (22) ! 

Poz 4 

In the temperature range from 100 to 140 K we have for argon 
(P'oz/P~.)=4.56 and p'o~/p~=3.45, which gives (p'oB/P'oz)=0.76. Najafi 
et al. [24] used the LIR to obtain 

P~B = (0.6)o.5 ~ 0.77 (23) 
! 

Poz 

which is very close to the ratio given by the DSEOS. 

4.3. Linearity of  the Bulk Modulus Versus Pressure 
(Tait-Murnaghan Equation) 

The origin of this regularity actually goes back to the empirical work 
of Tait on liquids in 1888 [6],  in which the bulk modulus (reciprocal com- 
pressibility) of a liquid (or solid) is linear in pressure for each isotherm. 
Such a linearity is known as the Tait-Murnaghan equation [8], 

B=Bo+B~p (24) 

where Bo and B' 0 are temperature-dependent parameters. A theoretical 
basis for this equation has been given by Song et al. [27], using an equa- 
tion of state based on statistical-mechanical perturbation theory. 

The reduced bulk modulus, Br, is plotted as a function of p in the 
200-1200 K temperature range for argon in Fig. 11, in accordance with 
Eq. (14). As shown, at high temperatures and pressures a linear behavior 
is obtained in a very wide pressure range, which is in accordance with the 
results obtained by Alavi et al. [9]. 

Using a little algebra calculation, we find the following result from the 
DSEOS: 

-Aop+ A2p 3 3 
Br-  RT + - ~  P (25) 
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Fig. 11. Tile reduced bulk modulus in terms o f  

pressure, using Eq. 125) Ibr given isotherms o1" 
ar~oll. 

which is expected to be linear with respect to p for each isotherm of a dense 
fluid. It must be noted that although the density of a fluid depends on the 
pressure for each isotherm, this dependency is very weak for dense fluids. 
The variation of the slope of Eq. (25) with respect to p is given by 

O(3/pRT)] 3 
-~p ]r=pRTKr (26) 

where i, T is the isothermal compressibility of the fluid. At high tem- 
peratures, the variation of the slope of Eq. (25) with pressure is small 
enough to be taken to be zero, a result which it not true at low tem- 
peratures. This prediction is consistent with the experimental data of 
Robertson and Babb [22].  The intercept of B,. versus p goes to zero at high 
temperatures, a result which is in agreement with Eq. (25). 

5. C O M P A R I S O N  O F  LIR A N D  D S E O S  

One of the recent equations of state derived for dense fluids is LIR, 
which simply predicts that ( Z -  1 ) v~ varies linearly with respect to p~, for 
each isotherm, as 

( Z -  1)v~ =A +Bp~ (27) 
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where A and B are temperature-dependent parameters of the fluid, 

m I 
A = A , - - -  (28) 

R T  

and 

Bi 
B =  (29) 

R T  

where A 2, A~, and Bt are constants depending on the type of fluid. 
Although it appears that LIR has a simpler form mathematically than 

the DSEOS, the LIR works only at temperatures below twice the Boyle 
temperature. However, the DSEOS does not have such a limitation. As 
shown in Fig. 12, ( Z - 1 ) v ]  as a function ofp~ has a large deviation from 
linearity for the 1200 K isotherm of argon. The coefficient of determination 
of LIR is given in Table IV, which may be compared with that of DSEOS 
given in Table I, to conclude that the former EOS is valid only tbr low 
temperatures ( T < 2 T n ) ,  while the latter is valid for the entire temperature 
range, as far as the experimental data exist. This is the advantage of the 
DSEOS over the LIR. 

The ability of the LIR and the DSEOS to predict the experimentally 
known regularities is comparable. However, the DSEOS has another 
advantage over the LIR to predict that the common bulk modulus and the 

0.370 

I,. 

7 0.365 

0 . , 3 6 0  i i 
3 4 5 6 

2 
,~ r 

Fig. 12. The liiilure of LIR at high temperatures, using 
experimental data on argon at 1200 K. 
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Reduced Parameters of LIR (A. B), the Coefficient of Determination (R2), and the 
Pressure Range (Ap) for Argon" for Different Isotherms 

T Ap 
IK) A • 10 ~ Bx 104 R-' (MPa) 

86 - 1679.4 + 1.459 2197.3 + 2.1 0.99999 0.1-8 
100 - 1302.4 + 3.5 1858.8 + 5.4 0.99992 0.4-60 
120 -932.5 -t-4.1 1519.8 + 6.9 0.99982 1.5-150 
140 - 696.8 + 3.08 1309.0 -t- 5.3 0.99987 4-250 
150 -614.2 + 3.6 1240.2 + 5.8 0.99987 10 300 
200 - 307.3 + 3.3 947.6 ___ 4.3 0.99986 40-600 
300 -9.6 + 2.9 622.9 + 3.8 0.99978 100 900 
400 129. I + 2.3 444.1 + 3.3 0.99973 200 -900 
500 207.4 + 2.4 327.6 + 3.7 0.99941 250-900 
600 256.2 + 2.6 245.0 + 4.4 0.99868 300-900 
700 293.8 + 3.3 174.6 + 6.1 0.99508 300-900 
800 317.3 + 3.4 124.3 +_ 6.7 0.98984 350-900 
900 334.7 + 3.4 83.0 + 7.2 0.97836 400 900 

1000 348.0 + 3.4 48.0 + 7.4 0.94531 450-900 
1100 358.7 _ 3.4 17.6 + 7.6 0.75432 500-900 
1200 367.3 + 3.6 -9.4 + 8.2 0.55045 550-900 

" Ref. 10. 

c o m m o n  c o m p r e s s i o n  p o i n t s  o c c u r  b o t h  o n l y  at l ow  t e m p e r a t u r e s ,  as 

e x p l a i n e d  before .  Th i s  l o w - t e m p e r a t u r e  p h e n o m e n o n  has  been  r e p o r t e d  

e x p e r i m e n t a l l y  by  B o u s h e h r i  et al. [ 2 6 ]  for  the  c o m m o n  b u l k - m o d u l u s  

p o i n t  and ,  recent ly ,  for  the  i soba r i c  e x p a n s i v i t y  by  De i t e r s  a n d  R a n d z i o  

[ 2 8 ] .  As we s h o w e d ,  the  D S E O S  verif ies  t ha t  the  ex is tence  o f  these  

c o m m o n  p o i n t s  is o n l y  a l o w - t e m p e r a t u r e  c h a r a c t e r i s t i c  o f  fluids. 

T h e  r a t io  o f  the  dens i t y  at two  c o m m o n  po in t s ,  P'oB/P'oz is equa l  to 

0.75 a c c o r d i n g  to the  D S E O S .  It  is i n t e re s t ing  to  n o t e  tha t  this  r a t io  is 

e q u a l  to (0.6) 0.5 = 0 . 7 7  g iven  by  the  L I R  [ 2 4 ] ,  so the  t w o  are  ve ry  c lose  to  

each  o ther .  

T h e  b e h a v i o r  o f  B r w i t h  respec t  to  p has  been  s tud ied  wi th  b o t h  the  

L I R  a n d  the  D S E O S  for  b o t h  subcr i t i ca l  a n d  superc r i t i ca l  f luids in a wide  

p re s su re  range .  I t  is i n t e r e s t i ng  to  n o t e  tha t  the  L I R  gives  the  fo l l owing  

r e l a t i on  for  Br w i t h  pressure :  

Br = 2 (Bp  4 - 1 ) + p (30) 

w h o s e  s lope  is exac t ly  the  s a m e  as the  s lope  g iven  by the  D S E O S  

[ E q .  (25) ] .  
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6. CONCLUSION 

An equation of state which was originally derived for solids was suc- 
cessfully applied for dense fluids by some modifications of its temperature- 
dependent parameters. Since the structure of a dense fluid is determined 
primarily by the short-range repulsive forces, like solids, its repulsive 
branch of the effective pair interaction potential can be represented by the 
same functional form in density as solids. The only major difference 
between the EOS of solids and that of dense fluids is the temperature 
dependencies of their parameters. The constancy of Cv with respect to T 
that applied for solids is not generally valid for dense fluids in a wide tem- 
perature range. Experimentally, we have noted that the Cv of a dense fluid 
varies with T linearly. 

The DSEOS predicts that the common bulk modulus and common 
compression points exist only at low temperatures, a fact which is known 
experimentally [26, 28]. The ratio of the densities at these points 
(P'oB/P'oz) implied by the DSEOS is 0.75, which is very close to the value 
0.77 given by the LIR. 

Finally, we obtained a very accurate equation of state for dense fluids, 
valid for all type of fluids, including polar, nonpolar, saturated, and 
unsaturated hydrocarbons and strongly hydrogen bonded, and quantum 
fluids (see Table II). It is valid for densities greater than the Boyle density 
at temperature from the triple point to the highest temperature for which 
the experimental data are available. 
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